神经影像脑网络效率指标的常模构建方法-尊龙凯时官方app下载

文档序号:36405340发布日期:2023-12-16 11:28阅读:6来源:国知局
神经影像脑网络效率指标的常模构建方法
mci
患者的全局和局部网络效率显著降低,节点效率降低主要发生在默认网络的关键区域,如楔前叶

前扣带回和海马旁回等

与正常人群相比相比,
mci
患者左额中回

右直肌

右顶上回和右顶下回的聚类系数显著降低,且左侧旁中央小叶的最短路径长度显著减少

5.常模,又被称为标准化模型,是一种通过对人群中某一指标在特定范围内的变化情况进行刻画,以试图得到人群中该指标的标准变化范围的统计方法,基于常模,可以在个体层面上得到其指标与预期模式的偏离程度,从而为个体化诊断提供一定的判断依据

从程序上来讲,常模构建一般包括四个步骤:
1、
变量与人群的选择,确定用于常模的构建与测量的参考队列与计算变量;
2、
选定构建算法并基于参考队列的变量数值进行模型估计与构建;
3、
模型评价,利用已有的评价指标对模型的准确性进行评价;
4、
模型应用,将模型应用于感兴趣的人群队列中以获取个体化偏差数值

常模多用于心理学指标测量领域,但近年来,在脑科学领域也有了一定的研究

目前的常模研究从研究目的上可以大体可以分为两类,一类是实现某项指标在正常人群中变化范围的刻画,类似于心理学中的应用,这类常模的研究注重于找寻某项指标在指定范围的正常变化模式与变化区间,以获得大脑的正常发展规律

另一类则是侧重于异常值的筛查,该类常模的构建目的在于通过对正常人群的变化模式进行刻画从而实现异常模式的筛查,例如疾病筛查等

目前的该类常模在常见疾病包括精神分裂症患者和自闭症患者等方面已有很多大脑异常指标的刻画研究

6.目前的常模构建算法多采用回归拟合算法,如多项式回归

高斯过程回归

分位数回归和线性回归等

其中,高斯过程回归由于其算法的灵活性与在非线性建模上的优越表现被广泛使用

在模型数据方面,绝大多数研究使用一些大脑结构指标,如皮层厚度

海马体积

脑容量等,该类指标一般计算比较稳定且在很多公共数据库均包含这类数据,可以较为容易地获取大量样本数据

7.在得到变量的变化常模之后,就可以计算个体化偏差以衡量个体指标的偏差程度

最简单的方法是直接计算目标数据与参考模型中对应位点的数值差值或差值的绝对值,这也是大多数预测模型偏差程度的计算方法

而在脑影像常模中更多是希望提供个体是否在统计的角度上偏离人群分布

一些研究采用z分数来量化个体的偏离程度,通过计算真实值

预期值之间差值与标准差之间的比值作为个体基于模型的偏差程度指标,并以此对个体真实值的异常程度进行评价

有些研究者则利用百分位数估计值来对个体数值的偏离人群程度进行量化

例如,
lv
等人在对精神分裂症患者
dti
和结构
mri
的分数各向异性(
fraction anisotropy, fa
)和皮层厚度(
cortical thickness, ct
)的研究中,使用分位数回归分别对男性和女性
fa
值和
ct
随年龄的变化情况进行建模,然后利用z分数对个体化偏差程度进行评价,超过第
95
个百分位数的
95%
置信区间的值会被认为是超正常值(即真实值与对应的
95
分位数的值之间的z分数大于
1.96
),而低于5分位数的
5%
置信区间的值会被认为是低于正常值即真实值与对应的
95
百分位数的值之间的z分数小于-1.96


通过这种方式,研究者将被试分为了超过正常值,正常值和低于正常值三类
。jia
等人则是在建立了分位数回归后,通过计算个体的d分数,作为偏离指标,其中,
d=2*
(真实值-50
分位数)
/

95
分位数-50
分位数)

还有些研究者利用极值统计的方式来评价个体指标的异常程度,这种方法通过找寻超过规定阈值的数值来寻找异常个体

8.但是,常模研究大多聚焦于一些基本的脑结构指标如
fa


灰白质体积等,未有人对脑网络效率指标在不同年龄段的正常变化范围进行系统刻画

先前的常模构建多集中于
单一数据集中,样本量少的同时常模的稳定性差



技术实现要素:

9.为克服现有技术的缺陷,本发明要解决的技术问题是提供了一种神经影像脑网络效率指标的常模构建方法,其分别构建了不同性别人群的脑白质网络效率指标老化常模,刻画了效率指标随年龄的变化情况与正常变化范围,利用
combat
多中心校正算法,通过将两个不同中心数据集进行融合,实现了常模在多个中心上的构建,进一步扩大了样本量的同时提高了构建常模的稳定性

10.本发明的技术方案是:这种神经影像脑网络效率指标的常模构建方法,其包括以下步骤:(1)采集国际公开数据库
hcp-aging
数据库和中国本土老年人数据库-北京老年脑健康促进计划
babri
数据集的大脑
t1

dmri
数据;(2)对
t1

dmri
数据进行预处理,构建全脑白质结构网络,并计算全脑网络和脑区水平拓扑效率指标,效率包括全局效率和局部效率,用
combat
算法对两个数据集的数据进行协调;(3)采用年龄作为自变量,将步骤(2)得到的每个被试协调后的全局效率

局部效率

节点全局效率

节点局部效率作为模型的因变量;将
babri
数据集中的
mci
患者数据作为测试集,不参与常模构建,为了避免年龄效应对测试数据的影响,在随机抽取认知正常人群测试集时,对数据的平均年龄和性别进行控制,以确保认知正常人群的测试集的年龄与性别与
mci
患者测试集基本匹配;对男性和女性的多模态网络效率指标进行分开建模,以减少性别差异对于模型的影响,基于训练集数据,采用r语言的
gamlss
包对男女的多尺度脑白质结构网络效率随年龄的变化方式进行刻画,模型选用分位数模型的形式,每个模型拟合5分位数
、25
分位数
、50
分位数
、75
分位数和
95
分位数五条曲线;个体化偏差评分采用d分数进行量化;选择
bcpe
分布作为分布模型,
pb
函数作为模型的平滑函数进行模型构建

11.本发明采用年龄作为自变量,每个被试协调后的全局效率

局部效率

节点全局效率

节点局部效率作为模型的因变量,将
babri
数据集中的
mci
患者数据作为测试集,对男性和女性的多模态网络效率指标进行分开建模,基于训练集数据,采用r语言的
gamlss
包对男女的多尺度脑白质结构网络效率随年龄的变化方式进行刻画,模型选用分位数模型的形式,个体化偏差评分采用d分数进行量化,选择
bcpe
分布作为分布模型,
pb
函数作为模型的平滑函数进行模型构建,因此分别构建了不同性别人群的脑白质网络效率指标老化常模,刻画了效率指标随年龄的变化情况与正常变化范围;用
combat
算法对两个数据集的数据进行协调,实现了常模在多个中心上的构建,进一步扩大了样本量的同时提高了构建常模的稳定性

12.还提供了神经影像脑网络效率指标的常模构建装置,其包括:数据采集模块,其配置来采集国际公开数据库
hcp-aging
数据库和中国本土老年人数据库-北京老年脑健康促进计划
babri
数据集的大脑
t1

dmri
数据;数据预处理及计算模块,其配置来对
t1

dmri
数据进行预处理,构建全脑白质结构网络,并计算全脑网络和脑区水平拓扑效率指标,效率包括全局效率和局部效率,用
combat
算法对两个数据集的数据进行协调;
常模构建模块,其配置来采用年龄作为自变量,将每个被试协调后的全局效率

局部效率

节点全局效率

节点局部效率作为模型的因变量;将
babri
数据集中的
mci
患者数据作为测试集,不参与常模构建,为了避免年龄效应对测试数据的影响,在随机抽取认知正常人群测试集时,对数据的平均年龄和性别进行控制,以确保认知正常人群的测试集的年龄与性别与
mci
患者测试集基本匹配;对男性和女性的多模态网络效率指标进行分开建模,以减少性别差异对于模型的影响,基于训练集数据,采用r语言的
gamlss
包对男女的多尺度脑白质结构网络效率随年龄的变化方式进行刻画,模型选用分位数模型的形式,每个模型拟合5分位数
、25
分位数
、50
分位数
、75
分位数和
95
分位数五条曲线;个体化偏差评分采用d分数进行量化;选择
bcpe
分布作为分布模型,
pb
函数作为模型的平滑函数进行模型构建

附图说明
13.图1是根据本发明的神经影像脑网络效率指标的常模构建方法的流程图

具体实施方式
14.如图1所示,这种神经影像脑网络效率指标的常模构建方法,其包括以下步骤:(1)采集国际公开数据库
hcp-aging
数据库和中国本土老年人数据库-北京老年脑健康促进计划
babri
数据集的大脑
t1

dmri
脑影像数据;(2)对
t1

dmri
数据进行预处理,构建全脑白质结构网络,并计算全脑网络和脑区水平拓扑效率指标,效率包括全局效率和局部效率,用
combat
算法对两个数据集的数据进行协调;(3)采用年龄作为自变量,将步骤(2)得到的每个被试协调后的全局效率

局部效率

节点全局效率

节点局部效率作为模型的因变量;将
babri
数据集中的
mci
患者数据作为测试集,不参与常模构建,为了避免年龄效应对测试数据的影响,在随机抽取认知正常人群测试集时,对数据的平均年龄和性别进行控制,以确保认知正常人群的测试集的年龄与性别与
mci
患者测试集基本匹配;对男性和女性的多模态网络效率指标进行分开建模,以减少性别差异对于模型的影响,基于训练集数据,采用r语言的
gamlss
包对男女的多尺度脑白质结构网络效率随年龄的变化方式进行刻画,模型选用分位数模型的形式,每个模型拟合5分位数
、25
分位数
、50
分位数
、75
分位数和
95
分位数五条曲线;个体化偏差评分采用d分数进行量化;选择
bcpe
分布作为分布模型,
pb
函数作为模型的平滑函数进行模型构建

15.本发明采用年龄作为自变量,每个被试协调后的全局效率

局部效率

节点全局效率

节点局部效率作为模型的因变量,将
babri
数据集中的
mci
患者数据作为测试集,对男性和女性的多模态网络效率指标进行分开建模,基于训练集数据,采用r语言的
gamlss
包对男女的多尺度脑白质结构网络效率随年龄的变化方式进行刻画,模型选用分位数模型的形式,个体化偏差评分采用d分数进行量化,选择
bcpe
分布作为分布模型,
pb
函数作为模型的平滑函数进行模型构建,因此分别构建了不同性别人群的脑白质网络效率指标老化常模,刻画了效率指标随年龄的变化情况与正常变化范围;用
combat
算法对两个数据集的数据进行协调,实现了常模在多个中心上的构建,进一步扩大了样本量的同时提高了构建常模的稳定性

16.优选地,该方法还包括步骤(4),通过胶囊神经网络和
lasso
正则化算法执行
mci

正常人群的分类

17.优选地,所述步骤(1)中,
babri
的影像数据使用西门子
trio 3t
磁共振扫描仪采集,
t1
数据的体素大小为1毫米,重复时间
tr

1900ms
,回波时间
te

3.44ms
,反转时间
ti

900ms
,视野
fov

256
×
256mm2,共有
176
个矢状切片,扩散磁共振数据的体素大小为2毫米,
30
个方向,
tr

9500ms

te

92ms

fov

256
×
256mm2,翻转角为
90
度,共有
92
个轴向切片;
hcp
的影像数据在四个数据点进行收集,采集仪器均为西门子
prisma 3t
磁共振扫描仪,
t1
数据的体素大小为
0.8
毫米,
tr

2500ms
,四个站点的
te
分别为
1.81ms、3.6ms、5.39ms

7.18ms

ti

1000ms

fov

256
×
256mm2,共有
208
个矢状切片,
dti
数据的体素大小为
1.5
毫米,
185
个方向,
tr

3230ms

te

89.2ms

fov

210
×
210mm2,翻转角为
78
度,共有
92
个轴向切片;在得到预处理之后的影像图像后,首先将被试的
b0
图像与
t1
图像进行配准,得到变换矩阵,然后将该矩阵的逆矩阵应用于
bna246
模板,得到个体大脑分区模板,将该模板与脑影像图像进行匹配得到相应的
246
分区,接下来以每个脑区作为网络节点,以脑区间的纤维连接数目
fn
作为边的权重构建大脑的
fn
加权网络,最后,根据得到的加权网络,利用
gretna
软件得到每个被试的多模态效率指标值

18.优选地,在所述步骤(2)中,将协调公式定义如下:(1)其中,表示站点i中扫描样本j的体素v的
fa
值,是体素v上
fa
的平均值,是实验设计矩阵,是设计矩阵
x
的回归系数,和分别表示样本中存在的加法批次效应和乘法批次效应,为误差项

19.优选地,所述步骤(3)中,个体化偏差定义如下:(2)其中,为某个被试的个体化偏差值,为该被试的实际效率值,和分别为常模中在该被试年龄下对应的
50
分位值和
95
分位值,该指标以五十分位数曲线为基准,评价了个体指标在分位数模型中偏离程度,d分数绝对值越大,表示该数据在模型中偏离程度越大,越有可能是异常值

20.优选地,所述步骤(3)中,
gamlss
模型的评价指标为
gaic
准则,其定义为:(3)其中,
p
表示惩罚值,为数据的对数似然,
df
为模型的自由度,
p
值决定了模型拟合度和复杂度之间权衡;
aic
是定义在熵值基础上的模型评价指标,计算公式为,其中,k表示参数个数,
l
为对应的似然函数,
bic
是基于贝叶斯思想的评价方法,其定义为,其中
l
为似然函数的值,k和n分别为参数总数和样本总数,在进行模型选择时,同时计算
aic
值和
bic
值,对二者进行综合权衡;选择仅基于男性和女性的全局效率
eg
和局部效率
eloc
进行;在模型选择方面,首先针对每一个分布模型所对应的不同参数模型进行实验,然后选取最佳模型作为该分布模型的代表模型参与比较,得到所有分布模型的代表模型的
aic
值和
bic
值后,综合选择最佳表现的分布模型作为最终模型的分布模型,最后,基于选定的分布模型测试其在不同平滑函数上的表现,以确定最终的
gamlss
模型为
bcpe
分布模型,
对不同的平滑函数进行测试,选取
pb
函数作为模型的平滑函数

21.优选地,所述步骤(4)中,采用每个被试的节点效率d分数作为神经网络模型的输入,数据矩阵大小为2×
246
,第一行为被试在
246
个脑区的节点全局效率d分数,第二行为节点局部效率d分数;胶囊神经网络模块包括三部分,卷积模块

初始胶囊模块和路由胶囊模块,数据首先由卷积层进行特征提取,进行非线性处理后输入到初始胶囊模块,该模块首先对输入数据进行卷积操作,进一步提取特征,然后根据设置的胶囊数与输出通道大小将输出向量进行切割,设置胶囊数为
32
,输出维度为8,最终输出会被分割为n×
32
×8的向量,路由胶囊模块实现矩阵权重的更新与结果向量的输出,在该模块的输出中,每一个类别都有一个对应的输出向量,每个类别的向量范数是最终分类的依据,每个路由胶囊通过对初始胶囊的传递的信息进行整合识别以实现最终的目标分类,路由胶囊模块还不断更新路由权重矩阵来调整初始胶囊之间的关系权重,路由权重矩阵的初始值随机设置或者根据特定的初始化策略进行设置,模型从正确的路由胶囊中接受一个
16
维的向量,学习将其解码为输入数据,以强制胶囊网络学习对重构原始输入数据有用的特征,增强模型的学习效率与学习准确率

22.优选地,所述步骤(4)中,采用的胶囊网络模块输入数据大小为2×
246
,输入
batch
大小为
16
,卷积层的卷积核大小为2×2,步长为1,使用
relu
函数作为卷积层的激活函数,初始胶囊模块的胶囊数为
32
,卷积核大小为1×1,步长为2,输出通道数为8,路由胶囊模块的输入向量维度为8,动态路由算法的迭代次数为3,输出胶囊为2,对应认知正常和
mci
两个分类;选用
adam
作为模型的优化器,学习率设置为
0.00001
,选择学习率调解器为指数型下降,
gamma
值设定为
0.96
,每一轮学习率会乘以
0.96

adam
优化器的其余参数均选择默认参数

23.优选地,所述步骤(4)中,损失定义如下:(4)其中
reconstruction_loss
表示重构损失,重构损失为基于模型输出值重构出的输入数据与实际输入数据之间的均方误差(
mean square error

mse


该损失是为了尽可能地保留输入数据的特征空间信息,“强制”胶囊神经网络学习可以帮助重建数据的相关数据特征

因此,重构损失可以表示为,其中,n表示数据矩阵的元素总数,和分别为点
(i,j)
处的真实值与重构值

为跳跃连接层的权重参数,表示权重参数的比例值,表示
ghm
分类损失,该方法不对数据进行任何处理,而是对神经网络的损失函数进行修改,通过控制模型对难易样本的关注程度来减少样本不均衡对分类结果的影响

该算法首先定义了样本梯度模长g,,其中,为样本实际类别标签,
p
为模型预测标签的置信度,g值越小,说明该样本预测结果与实际情况差距越小,对该样本分类越容易
。ghm
分类算法提出梯度密度
(gd)
概念,
,其中,,,其中,为交叉熵损失

24.本领域普通技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,包括上述实施例方法的各步骤,而所述的存储介质可以是:
rom/ram、
磁碟

光盘

存储卡等

因此,与本发明的方法相对应的,本发明还同时包括一种神经影像脑网络效率指标的常模构建装置,该装置通常以与方法各步骤相对应的功能模块的形式表示

该装置包括:数据采集模块,其配置来采集国际公开数据库
hcp-aging
数据库和中国本土老年人数据库-北京老年脑健康促进计划
babri
数据集的大脑
t1

dmri
数据;数据预处理及计算模块,其配置来对
t1

dmri
数据进行预处理,构建全脑白质结构网络,并计算全脑网络和脑区水平拓扑效率指标,效率包括全局效率和局部效率,用
combat
算法对两个数据集的数据进行协调;常模构建模块,其配置来采用年龄作为自变量,将每个被试协调后的全局效率

局部效率

节点全局效率

节点局部效率作为模型的因变量;将
babri
数据集中的
mci
患者数据作为测试集,不参与常模构建,为了避免年龄效应对测试数据的影响,在随机抽取认知正常人群测试集时,对数据的平均年龄和性别进行控制,以确保认知正常人群的测试集的年龄与性别与
mci
患者测试集基本匹配;对男性和女性的多模态网络效率指标进行分开建模,以减少性别差异对于模型的影响,基于训练集数据,采用r语言的
gamlss
包对男女的多尺度脑白质结构网络效率随年龄的变化方式进行刻画,模型选用分位数模型的形式,每个模型拟合5分位数
、25
分位数
、50
分位数
、75
分位数和
95
分位数五条曲线;个体化偏差评分采用d分数进行量化;选择
bcpe
分布作为分布模型,
pb
函数作为模型的平滑函数进行模型构建

25.以上所述,仅是本发明的较佳实施例,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改

等同变化与修饰,均仍属本发明技术方案的保护范围

当前第1页1  
相关技术
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
网站地图